How Electrocoagulation works

REACTION a) AI \rightarrow AI³⁺ + 3e⁻ b) 2e⁻ + 2H₂0 \rightarrow H₂ + 20H⁻

- 1. DC current passed between the terminal electrodes (usually stainless steel) across a stack of bipolar sacrificial electrodes (usually aluminium or mild steel)
- 2. Active coagulant ions (Al³⁺ or Fe²⁺) are produced at the anodes, and react to pull pollutants from solution into semi-solid clusters
- 3. Gas release on the Cathode integrates into the growing pollutant cluster, making it buoyant and easier to separate physically
- 4. The active ions do-not produce by-products which add to the total contaminants, unlike chemical dosing systems

www.kolina.co.uk